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Abstract—In recent years there has been an increase in the
number of inactive and debris objects in space. The characteri-
zation of the uncertainty in the knowledge of these Space Objects
(SOs) is very important in developing an understanding of the
space debris fields and any present or future threat they may
pose. This work examines classification based on Multiple Model
Adaptive Estimation (MMAE) to extract SO characteristics from
observations while estimating the probability the observations
belong to a given class of objects. Recovering these characteristics
and trajectories with sufficient accuracy is shown in this paper,
where the characteristics are inherent in unique SO models used
in the MMAE filter bank. A number of scenarios are shown to
highlight the effectiveness of the proposed classification approach.
The performance of this strategy is demonstrated via simulated
scenarios.

I. INTRODUCTION

Due to the large number of space objects (SOs) and the
limited number of sensors available to track them, it is difficult
to maintain persistent surveillance, and, therefore, there is
inherent uncertainty and latency in the knowledge of the
SO population. Although the amount of light collected from
these objects is small, information can still be extracted from
photometric data which can be used to determine shapes and
other properties. Light curve data are the time-varying sensor
wavelength-dependent apparent magnitude of energy (e.g. pho-
tons) scattered (reflected) off of an object along the line-of-
sight to an observer. Attitude estimation and extract of other
characteristic using light curve data has been demonstrated in
Refs. 1–6.

An approach is presented that uses the probability from
a Multiple Model Adaptive Estimation (MMAE) process to
determine the probability that a given Space Object (SO) falls
in a given class. MMAE is a recursive algorithm that uses a
bank of estimators, each dependent on a particular hypothesis,
to determine an estimate based upon an unknown physical
process under consideration. In particular, the hypotheses can
correspond to different mathematical models of the same
physical process or of the same model but dependent upon
different constants or model parameters. The classification
approach used in the work in outlined in Figure 1. The first
determination is made from the size of the shape models in the
bank. For each model in the bank an aspect ratio is calculated

for each size by calculating the length ratio of that side with
respect to the largest side and if a given model has an aspect
ratio less than 0.1 it is considered to be a fragment.
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Fig. 1: Overview of Classification Approach

The second classification determination is made from the
control states. For each model in the bank that is not a frag-
ment or a rocket body additional models are created that are
copies of that shape model but have different control profiles.
The control profiles include uncontrolled, Sun pointing, spin
stabilized, and nadir pointing. Therefore, for models that are
not fragments of rocket bodies 3 additional modes are created
with control. The control states are not limited to ones used
in this work and large list of control state may be possible but
for this study these three are sufficient.

The classification is determined using the shape model, for
example determining whether an object is intact or passive and
whether it is a rocket body or a payload. The final classification
further separates the SO into the type of control state and
determining whether an object is uncontrolled or Sun pointing,
etc. This method uses the MMAE probability to classify the
four feature classes and results for this method are shown. This
paper discusses the theory involved behind the algorithm and
results from a variety of simulation trials are shown.

The organization of this paper is as follows. First, the



Ashikmin-Shirley light curve model is shown, and the kine-
matic and dynamic models used in this work are discussed.
Next, the Unscented Kalman Filter approach used in this work
is outlined. Following this, the MMAE approach used in this
work is outlined. Then the classification approach is discussed.
Finally, results are shown for simulated examples. Discussions
and conclusions are provided.

II. ASHIKHMIN-SHIRLEY MODEL

Figure 2 shows the space object shape model and reflection
geometry. In addition to the azimuth and elevation, the optical
site also records the magnitude of the brightness of the Space
Objects (SOs). The brightness of an object in space can be
modeled using an anisotropic Phong light diffusion model or
the Ashikhmin-Shirley model.7 This model is based on the
bidirectional reflectance distribution function (BRDF) which
models light distribution scattered from the surface due to
the incident light. The BRDF at any point on the surface
is a function of two directions, the direction from which
the light source originates and the direction from which the
scattered light leaves the observed surface. The model in Ref. 7
decomposes the BRDF into a specular component and a diffuse
component. The two terms sum to give the total BRDF:

ρtotal(i) = ρspec(i) + ρdiff(i) (1)

where i denotes the ith facet of the SOs. Each facet contributes
independently to the brightness and total brightness is the
sum over each facet’s contribution. The diffuse component
represents light that is scattered equally in all directions
(Lambertian) and the specular component represents light that
is concentrated about some direction (mirror-like). Reference
7 develops a model for continuous arbitrary surfaces but
simplifies for flat surfaces. This simplified model is employed
in this work as shape models are considered to consist of
a finite number of flat facets. Therefore the total observed
brightness of an object becomes the sum of the contribution
from each facet. Under the flat facet assumption the specular
term of the BRDF becomes7
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where the Fresnel reflectance is given by

Freflect(i) = Rspec(i) + (1−Rspec (i))
(

1− uI
sun · u

I
h

)5
(4)

where Rspec is the specular reflectance coefficient. The param-
eters of the Phong model that dictate the directional (locally
horizontal or vertical) distribution of the specular terms are
nu and nv . The terms in Eq. (2) are functions of the reflection
geometry which is described in Figure 2(b). The diffuse term
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Fig. 2: Reflection Geometry and Space Object Shape Model
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where Rdiff(i) is the diffuse coefficient for the ith side. The
model discussed above assumes only single scattering and no
self shadowing.

A. Flux Calculation

The apparent magnitude of an SO is the result of sunlight
reflecting off of its surfaces along the line-of-sight to an
observer. First, the fraction of visible sunlight that strikes an
object (and is not absorbed) is computed by

Fsun(i) = Csun,vis

(

uI
n(i) · u

I
sun

)

(6)



where Csun,vis = 1062 W/m2 is the power per square meter
impinging on a given object due to visible light striking the
surface. If either the angle between the surface normal and the
observer’s direction or the angle between the surface normal
and Sun direction is greater than π/2 then there is no light
reflected toward the observer. If this is the case then the
fraction of visible light is set to Fsun(i) = 0. Next, the fraction
of sunlight that strikes an object that is reflected must be
computed:

Fobs(i) =
Fsun(i)ρtotal(i)A(i)

(

uI
n(i) · u

I
obs

)

‖dI‖2
(7)

The reflected light of each facet is now used to compute the
total photon flux, which is measured by an observer:

F̃ =

[

N
∑

i=1

Fobs(i)

]

+ vCDD (8)

where vCDD is the measurement noise associated with flux
measured by a Charge Coupled Device (CCD) sensor. The total
photon flux is then used to compute the apparent brightness
magnitude

mapp = −26.7− 2.5log10
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where −26.7 is the apparent magnitude of the Sun.

B. Unscented Kalman Filter

The attitude state errors are represented as error Gener-
alized Rodrigues Parameters (GRPs) resulting in a minimum
parameter representation for the attitude state error.8 To within
first order, the state error covariance of the attitude is invariant
whether the errors are parameterized using quaternions or
GRPs.9 Therefore, the attitude state error-covariance can be
directly decomposed into error GRP sigma points for use in the
Unscented Kalman Filter (UKF). The sigma points correspond-
ing to the error GRPs are first converted into error quaternions
so that the quaternion sigma points can be computed. The error
quaternion, denoted by δq−

k (i), associated with the ith error
GRP sigma point is computed by8

δ̺−
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[
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]

χ
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where a is a parameter from 0 to 1 and f is a scale factor,
which is often set to f = 2(a + 1) so that the attitude error
covariance is that of the small roll, pitch and yaw angle errors.
Here it is noted that the subscript I and superscript B in qB

I
and its estimates are omitted in this and the following sections
for clarity. The ith quaternion sigma point is given by a rotation
of δq−

k (i) about the a priori estimate:
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where
q1 ⊗ q2 ≡ [Ψ(q1) q1]q2 (12)

The sigma points are propagated through the system dynamics:

χ̇(i) = f (χ(i), q̂(i)) (13)
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The estimated acceleration and torque due to SRP are cal-
culated with equations given in Ref. 3, respectively. After
propagation, the sigma points for the error GRP states are
computed with the propagated attitude sigma points. The
estimated mean sigma point quaternion, q̂−

k+1(0), is stored, and
error quaternions corresponding to each propagated quaternion
sigma point are computed as:

δq̂−

k+1(i) = q̂−

k+1(i)⊗
[

q̂−

k+1(0)
]

−1
(15)

where the notation for the conjugate quaternion is defined as:

q−1 ≡

[

−̺
q4

]

(16)

Using the result of Eq. (15), the error GRP sigma points are
computed as

δp−

k+1(i) = f
δ ˆ̺−k+1(i)

a+ δq̂−4k+1
(i)

(17)

After setting the error GRP for the mean sigma point to zero,
the propagated sigma points are reconstructed. The propagated
mean and covariance are calculated as a weighted sum of the
sigma points as

P−
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∑

i=0
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T
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2L
∑

i=0

Wmean
i χk+1(i) (19)

where Qk+1 is the discrete-time process noise covariance.

As previously discussed, measurements are available in the
form of azimuth, elevation and apparent brightness magnitude,
ỹ ≡ [m̃app ãz ẽl]T . Estimated observations are computed for
each sigma point using the observation models:

yk(i) = h
[

χk(i), q̂
−

k (i)
]

(20)

The mean estimated output and covariance matrices are then
calculated. The quaternion update is performed by converting
the error GRP states of x̂+

k to a quaternion, δq̂+
k , via Eq. (10),

and performing
q̂+
k = δq̂+

k ⊗ q̂−

k (0) (21)

C. Multiple Model Adaptive Estimation

In this section a review of MMAE is shown. More details
can be found in Refs. 10 and 11. Figure 3 shows the MMAE
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Fig. 3: MMAE Process

process. Multiple-model adaptive estimation is a recursive
estimator that uses a bank of filters that depend on models
with different parameters, denoted by the vector p, which
is assumed to be constant (at least throughout the interval
of adaptation). Note the stationary assumption for the state
and/or output processes is not necessarily required though,
i.e. time varying state and output matrices can be used. A
set of distributed elements is generated from some known
pdf of p, denoted by Pr (p), to give {p(ℓ); ℓ = 1, . . . , M}.
The finite set of parameters can be the results of discretiz-
ing a continuous parameters space, selecting a set of values
{p(1), p(2), . . . , p(k)} dispersed throughout the region of
reasonable parameter values.

The goal of the estimation process is to determine the
conditional probability of the ℓth element, p(ℓ), given all the
measurements. Application of Bayes’ rule yields

Pr (p(ℓ)|Ỹk) =
Pr (Ỹk|p

(ℓ)) Pr (p(ℓ))
M
∑

j=1

Pr (Ỹk|p
(j)) Pr (p(j))

(22)

where Ỹk denotes the sequence {ỹ0, ỹ1, . . . , ỹk}. The condi-

tional probability Pr (p(ℓ)|Ỹk) will be the metric used to select
the most likely model and or the most likely combination of
shape models. The a posteriori probabilities can be computed
through12

Pr (p(ℓ)|Ỹk) =
Pr (ỹk, p
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The conditional probability of the observa-
tions based on each hypothesis (likelihood),

p (ỹk|x̂
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k ) are given as
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−(ℓ)
k ) =

1

det
(

2πS
(ℓ)
k

)1/2
exp

{

−
1

2
e
(ℓ)T
k S

(ℓ)
k

−1
e
(ℓ)
k

}

(24)
where measurement residual for the ℓth hypothesis (model) is
given by

e
(ℓ)
k = ỹk − h[x̂−

k (p
(ℓ))] (25)

and corresponding residual covariance matrix from the UKFs

S
(ℓ)
k = P

vv (ℓ)
k (26)

where P
vv (ℓ)
k is the innovation matrix for the ℓth filter.

Note that the denominator of Eq. (23) is just a normalizing
factor. The recursion formula can now be cast into a set of
defined weights ̟

(ℓ)
k , so that

̟
(ℓ)
k = ̟

(ℓ)
k−1 Pr (ỹk−1|x̂

−(ℓ)
k−1 )

̟
(ℓ)
k ←

̟
(ℓ)
k

M
∑

j=1

̟
(j)
k

(27)

where ̟
(ℓ)
k ≡ Pr (p(ℓ)|Ỹk). Note that only the current time

measurement ỹk is needed to update the weights. The weights

at time t0 are initialized to ̟
(ℓ)
0 = 1/M for ℓ = 1, 2, . . . , M .

The convergence properties of MMAE are shown in Ref. 12,
which assumes ergodicity in the proof. The ergodicity as-
sumptions can be relaxed to asymptotic stationarity and other
assumptions are even possible for non-stationary situations.13

From Eq. (24) and Eq. (27) it is seen that models which
have lower residuals will have probability that will increase;
this will favor models that fit the observations better. Also
from Eq. (24) it is seen that models which have small values

for det(S
(ℓ)
k ) will have probability that will grow. Assuming

that all models have same measurement noise covariance
matrix Rk, this will favor models that have smaller variance.
Therefore the MMAE process will tend to select the maxi-
mum likelihood (minimum variance) model from the bank of
models.
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Fig. 4: Overview of Angular Velocity Determination Approach

D. Angular Velocity Determination

When processing light curve observations it may not be
valid to assume that the SO is uncontrolled and therefore we
must take into account the possibility of controlled attitude
states. Determining whether a SO has active control or not may



also provide a feature state that may be used for classification.
For example, a determination of whether a SO is passive or
active can be made based on whether light curve observations
indicated that the SO has active attitude control.

In this work, the attitude control is simulated by assuming
control profiles, for example Sun pointing, Nadir pointing, and
spin stabilized. Then for each control profile a desired angular
velocity is determined which will allow the SO to track the
relevant directions. The angular velocity profiles are used to
calculate the torque required to track this profile. This section
discusses the attitude control approach used and four method
for calculating the desired angular velocity profile which is
shown in Figure 4. The attitude control is designed to minimize
the following error:

e = ω − ωd (28)

Differentiating this equation with respect to time yields

ė = ω̇ − ω̇d (29)

It is desirable for the error dynamics to decay exponential over
time, i.e. e ∝ e−kpt, and therefore the error rate equation is
desired to have the following form:

ė = −kpe (30)

Then using Euler’s equation and assuming disturbance torques
are negotiable, Eq. (29) can be written as

ė = J−1
SO (τ − [ω×]JSOω)− ω̇d (31)

where τ is the torque provide by the attitude actuator. Then
for an exponentially decaying tracking error the desired torque
expression becomes

τ = −J−1
SO (τ − [ω×]JSOω) + ω̇d − kpe (32)

This expression is used to calculate the torque required to
maintain the desired pointing profile.

In this section angular velocity determination approaches
are discussed. Consider the following unit-vector measurement
model at time tk:

b̃jk = Ak rj + vjk (33)

where b̃jk is the j th pointing vector in the inertia frame and
is rj the same pointing vector in the body frame. The attitude
matrix mapping from inertia to the body frame is denoted by
Ak. Our goal is to determine the rate of change of this attitude
matrix or the angular velocity. Taking the difference between
successive measurements of Eq. (33) gives

b̃jk+1
− b̃jk = [Ak+1 −Ak] rj + vjk+1

− vjk (34)

We assume that the body angular velocity ω is constant
between tk and tk+1, and ignore terms higher than first order
in ω∆t. With these assumptions the following first-order
approximation can be used:14

Ak+1 ≈
[

I3×3 −∆t [ωk×]
]

Ak (35)

In this case ωk is the average velocity, but this becomes less
of a problem as the sampling interval decreases. Substituting
Eq. (35) into Eq. (34) gives

b̃jk+1
− b̃jk = −∆t [ωk×]Ak rj + vjk+1

− vjk (36)

Our goal is to determine an angular velocity estimate indepen-
dent of attitude and the reference vectors. This is accomplished
by solving Eq. (33) in terms of Ak ri and substituting the
resultant into Eq. (36), which yields

1

∆t
[b̃jk+1

− b̃jk ] = [b̃jk×]ωk +wjk (37)

where wjk is the new effective measurement noise vector given
by

wjk ≡ [ωk×]vjk +
1

∆t
[vjk+1

− vjk ] (38)

Note that ∆t will have finite values, since discrete-time mea-
surements are assumed. Equation (37) can now be cast into a
linear least-squares form for all measurement vectors, which
leads to

ω̂k =
1

∆t

[

nk
∑

j=1

[b̃jk×]
TR−1

jk
[b̃jk×]

]

−1

nk
∑

j=1

[b̃jk×]
TR−1

jk
(b̃jk+1

− b̃jk)

(39)

where ω̂k is the estimate of ωk. For small ∆t the propagated
true value of bj can be given using Eq. (35):

bjk+1
≈ {I3×3 −∆t [ωk×]}bjk (40)

Substituting Eq. (40) into Eq. (35), left multiplying by [bjk×]
T

and right multiplying by [bjk×] gives

[bjk×]
TR−1

jk
[bjk×] = σ̄−2

j [bjk×]
T [bjk×] (41)

where σ̄2
j ≡ 2σ2

j /∆t2. Also, since bT
jk+1

bjk ≈ 1, it is easy to
show that
[bjk×]

TR−1
jk

(bjk+1
− bjk) ≈ σ̄−2

j [bjk×]
Tbjk+1

. Therefore,
Eq. (39) is well approximated by

ω̂k =
1

∆t

[ nk
∑

j=1

σ̄−2
j [b̃jk×]

T [b̃jk×]

]

−1 nk
∑

j=1

σ̄−2
j [b̃jk×]

T b̃jk+1

(42)
where the measurements have again been substituted in place
of their true values.

III. SIMULATION RESULTS

Four simulation scenarios are presented to show the perfor-
mance of the MMAE based classification approach to classify
an SO from magnitude and angles observations. In each
scenario a different object is selected that falls into a different
class. The objects selected are spin stabilized bus, uncontrolled
bus, nadir pointing bus, and uncontrolled rocket body. All
scenarios, an SO is in near geosynchronous orbit with orbital
elements given by a = 42, 364.17 km, e = 2.429 × 10−4,
i = 30 deg, ω = Ω = 0.0 deg and M0 = 91.065 deg. The
simulation epoch is 15-March-2010 at 04:00:00 GST. The
initial quaternion and angular rate of the SO are given by
qB
I ≡ [0.7041 0.0199 0.0896 0.7041]T and ωB

B/I =

[206.26 103.13 540.41]T deg/hr.

Brightness magnitude and angle observations are simulated
using a ground station located at 20.71◦ North, 156.26◦

West longitude and 3,058.6 m altitude. Measurements con-
structed using instantaneous geometry are corrupted by zero-



mean Gaussian white noise with standard deviations of 1
arc-seconds on the azimuth observation, 1 arc-seconds on
the elevation observation and 0.1 for the brightness magni-
tude.15 Observations are available every 5 seconds for one
hour.The initial states for each filter are given by q̂B

I (t0) =
[0.7500 0.0712 0.0947 0.6508]T (a 10 degree attitude
error), ω̂B

B/I(t0) = [220.26 117.13 554.41]T , â(t0) =

42, 364.148255 km, ê(t0) = 2.4290× 10−4, î(t0) = 30.0083
deg, ω̂(t0) = −1.172 deg, Ω̂(t0) = 0.0 deg and M̂0(t0) =
92.137 deg. Initial 3σ values are taken to be 20 deg for
the attitude states, 72 (deg/hr) on the angular rates, 300 km
on position and 3 (km/s) on velocity. The process noise for

the UKFs are taken as Q
(ℓ)
k = 0 for this proof of concept

simulation.

A. Classification Results

Figure 5 shows the classification results for a spin stabi-
lized bus. In this case the bus models are considered to be
regular cuboids with aspect ratio larger than 0.1. As discussed
in classification section there are a number of classes the
classification approach determines, whether the SO belongs
to these classes. The first class is whether the SO is intact or a
fragment. In this case the true model is an intact bus and from
Figure 5 we can see that this determination is made relatively
quickly. The second determination is whether SO is active or
passive, which is also shown in Figure 5. The active or passive
decision is made using the probability of all active and passive
models in the bank. We can see from Figure 5 that the active
model gain achieves large probabilities after 0.2 hours.

Additional examples are shown for an uncontrolled bus
(Figure 6), nadir pointing bus (Figure 7), and uncontrolled
rocket body (Figure 8). The approach shows good performance
for these examples for determining the correct class. From
the figures it can be seen that some objects take longer to
classify. This is due to the fact that for some spin states the
light curves are similar, but for uncontrolled spin states the
light curve differs significantly. This can be seen from nadir
pointing bus (Figure 7), which takes the longest to converge
to its classification, and from uncontrolled rocket body (Figure
8), which converges the fastest to its classification.

IV. CONCLUSION

In this paper, an Multiple Model Adaptive Estimation
(MMAE) scheme for space object classification using light
curve and angles data was presented, which can be used
to identify the most probable class of the SO along with
its associated rotational and translational states. Using an
Unscented filter to reduce brightness magnitude and angle data,
the MMAE is able to determine the probability of each model.
An approach is presented that uses the probability from a
MMAE process to determine the probability that a given Space
Object (SO) falls in a given class. The classification approach
determines whether the SO is intact or fragment, its control
states, the type of control state, and whether it is rocket body,
payload, or debris. Simulation results showed a number of
examples and good results for classification are given.
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Fig. 5: Spin stabilized Bus Example
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Fig. 6: Uncontrolled Bus Example
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Fig. 7: Nadir Pointing Bus Example
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Fig. 8: Rocket Body Example
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